

East-coast heavy precipitation event of 29 Sep – 01 Oct 2010: results from GFS/EnKF ensembles

Tom Galarneau¹, Tom Hamill², and Jeff Whitaker²

¹CIRES and ²NOAA/ESRL

Figure 1. <u>Q2 precipitation</u> analysis over the Mid-Atlantic region. Upper panel is a 2-day total ending at 1100 UTC 1 October 2010 and the lower panels of the last 24 hours ending 2300 UTC 30 September 2010.

Preliminary precipitation analysis, c/o Rich Grumm, NWS/WFO, State College PA

massive and widespread East-coast rain event, linked in part to moisture advected ahead of remnants of tropical storm Nicole.

EnKF configuration

- Data assimilation this summer uses GFS model, at T254L64, 80 members; assimilated the full observational data stream + TCVitals MSLP observation. For more details on hurricane forecast skill, see http://tinyurl.com/2ca3a8k
- For 20 members of 80, we make 5-day forecast.
- Also: forecasts from ensemble mean at T254 and T574 resolution. For comparison, also have T574 forecasts initialized from GSI.

Preliminary conclusions about EnKF performance

- EnKF-based ensembles provided evidence of a major east-coast heavy precipitation event as early as 3-5 days prior.
- Heavy precipitation in this case appeared relatively predictable due to large-scale signal; great surge of moisture advected northwest between strong anticyclone over Atlantic and low pressure systems (Nicole + extratropical).
- Short-lead EnKF ensembles did a very good job with the maximum precipitation but had many members with axis too far west.
- Looking at SLP patterns, the ensemble members tended to develop one dominant storm, be it the northerly or southerly one, whereas in fact both kept their (weaker) identities.
- More to come as we dig into EnKF and its relative performance compared to operational models.

T254 GFS/EnKF 72-120 hour forecast from 2010092612

System appears to be a bit slow at this lead, with precip max too far south and west. Ensemble mean is indicating widespread significant rain along I-95 corridor.

T254 GFS/EnKF 60-108 hour forecast from 2010092700

Still a bit slow.

T254 GFS/EnKF 48-96 hour forecast from 2010092712

T254 GFS/EnKF 36-84 hour forecast from 2010092800

T254 GFS/EnKF 24-72 hour forecast from 2010092812

Axis of heavy precipitation jumps too far west, but still signal of major event.

T254 GFS/EnKF 12-60 hour forecast from 2010092900

Axis of high probability for 100 mm too far west, but axis for 200 mm better. Ensemblemean amounts in excess of 150 mm.

Probability and ensemble mean, NCEP

T190 Operational GFS, GSI-ETR 12-60 hour forecast from 2010092900

Better job with axis of high probability for 100 mm relative to GFS/EnKF on previous slide, but no probabilities in excess of 200 mm. Are the lesser amounts relative to GFS/EnKF a function of the coarser grid size (here, 1-degree grid vs. 0.5-degree for GFS-EnKF)?

Probability and ensemble mean, GFS/EnKF, degraded to 1-degree grid of operational

T254 GFS/EnKF 12-60 hour forecast from 2010092900

Axis of high probability for 100 mm too far west, but axis for 200 mm better. Ensemblemean amounts in excess of 150 mm.

T254 GFS/EnKF MSLP ens 72-hr fcst for ATL from 2010092712

MSLP, 72-h forecast from 12Z 27 Sep 2010

Note verifying analysis in lower left does not have the single strong storm common in many members

T254 GFS/EnKF MSLP ens 24-hr fcst for ATL from 2010092912

More to come...

- Objective verification statistics for this storm, and more generally for precipitation from EnKF forecasts over CONUS.
- Further EnKF development and testing, work with NCEP/EMC on hybrid.
- Your ideas?

Stamp maps, 48-h accumulated precipitation, 3-5 days before storm

forecast storm totals are impressive; even with this T254 version of GFS (~70 km grid spacing), many members are forecasting 2-day accumulations in excess of 200 mm (8 inches). Operational GFS from GSI analysis also forecasting major event.

16

Stamp maps, 48-h accumulated precipitation, 2.5-4.5 days before storm

EnKF members appear to be producing more rain over land than operational GFS.

Stamp maps, 48-h accumulated precipitation, 2.0-4.0 days before storm

Stamp maps, 48-h accumulated precipitation, 1.5-3.5 days before storm

Stamp maps, 48-h accumulated precipitation, 1.0-3.0 days before storm

48-h accumulated precipitation, 0.5-2.5 days before storm.

member 1 predicts in excess of 300 mm (12 inches) in eastern NC

NCEP Operational

Stamp maps,48h accumulated precipitation, 0.5-2.5 days before storm.

Comparing this to previous slide, the T254 GFS/EnKF appears to have a narrower swath and heavier precipitation.